Login / Signup

Considerations in the Use of Body Mass Change to Estimate Change in Hydration Status During a 161-Kilometer Ultramarathon Running Competition.

Martin D HoffmanEric D B GouletRonald J Maughan
Published in: Sports medicine (Auckland, N.Z.) (2018)
Hydration guidelines found in the scientific and popular literature typically advise that body mass losses beyond 2% should be avoided during exercise. In this work, we demonstrate that these guidelines are not applicable to prolonged exercise of several hours where body mass loss does not reflect an equivalent loss of body water due to the effects of body mass change from substrate use, release of water bound with muscle and liver glycogen, and production of water during substrate metabolism. These effects on the body mass loss required to maintain body water balance are shown for a 161-km mountain ultramarathon running competition participant utilizing published data for the total energy cost, exogenous energy consumption and percentage from each fuel source, average participant body mass, and the extent of soft tissue fluid accumulation during an ultramarathon. We assumed that total energy derived from protein ranges from 5 to 10%, all exogenous energy is used to support the energy cost of the race, glycogen utilization ranges from 300 to 500 g, water linked with glycogen ranges from 1 to 3 g per g of glycogen, and the mass of the bladder and gastrointestinal tract is unchanged from pre-race to post-race body mass measurements. These calculations show that the average participant of 68.8 kg must lose 1.9-5.0% body mass to maintain the water supporting body water balance while also avoiding overhydration. Future hydration guidelines should consider these findings so that the proper hydration message is conveyed to those who participate in prolonged exercise.
Keyphrases
  • high intensity
  • physical activity
  • skeletal muscle
  • clinical practice
  • soft tissue
  • molecular dynamics
  • body composition
  • resistance training