Recent Advances in Micro-LEDs Having Yellow-Green to Red Emission Wavelengths for Visible Light Communications.
Konthoujam James SinghWei-Ta HuangFu-He HsiaoWen-Chien MiaoTzu-Yi LeeYi-Hua PaiHao-Chung KuoPublished in: Micromachines (2023)
Visible light communication (VLC), which will primarily support high-speed internet connectivity in the contemporary world, has progressively come to be recognized as a significant alternative and reinforcement in the wireless communication area. VLC has become more popular recently because of its many advantages over conventional radio frequencies, including a higher transmission rate, high bandwidth, low power consumption, fewer health risks, and reduced interference. Due to its high-bandwidth characteristics and potential to be used for both illumination and communications, micro-light-emitting diodes (micro-LEDs) have drawn a lot of attention for their use in VLC applications. In this review, a detailed overview of micro-LEDs that have long emission wavelengths for VLC is presented, along with their related challenges and future prospects. The VLC performance of micro-LEDs is influenced by a number of factors, including the quantum-confined Stark effect (QCSE), size-dependent effect, and droop effect, which are discussed in the following sections. When these elements are combined, it has a major impact on the performance of micro-LEDs in terms of their modulation bandwidth, wavelength shift, full-width at half maximum (FWHM), light output power, and efficiency. The possible challenges faced in the use of micro-LEDs were analyzed through a simulation conducted using Crosslight Apsys software and the results were compared with the previous reported results. We also provide a brief overview of the phenomena, underlying theories, and potential possible solutions to these issues. Furthermore, we provide a brief discussion regarding micro-LEDs that have emission wavelengths ranging from yellow-green to red colors. We highlight the notable bandwidth enhancement for this paradigm and anticipate some exciting new research directions. Overall, this review paper provides a brief overview of the performance of VLC-based systems based on micro-LEDs and some of their possible applications.