Hyperalgesic Effect Evoked by il-16 and its Participation in Inflammatory Hypernociception in Mice.
Sara González-RodríguezChristian Sordo-BahamondeAlejandro Álvarez-ArtimeAna BaamondeLuis MenéndezPublished in: Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology (2024)
The systemic administration of interleukin-16 (IL-16, 3-30 ng/kg) induced thermal hyperalgesia in mice, that was prevented by the acute injection of an anti-CD4 antibody (1 µg/kg), the depletion of circulating white blood cells by cyclophosphamide or the specific reduction of circulating CD4 + cells provoked by a high dose of an anti-CD4 antibody (30 µg/mouse, 24 h before). IL-16-induced hyperalgesia was locally inhibited after intraplantar (i.pl.) administration of the non-selective cyclooxygenase (COX) inhibitor diclofenac, the COX-1 inhibitor SC-560, the COX-2 inhibitor celecoxib, the TRPV1 antagonist capsazepine or the TRPA1 antagonist HC030031, thus demonstrating that prostaglandins and TRP channels are involved in this effect. The i.pl. administration of low doses of IL-16 (0.1-1 ng) evoked local hyperalgesia suggesting the possibility that IL-16 could participate in hypernociception associated to local tissue injury. Accordingly, IL-16 concentration measured by ELISA was increased in paws acutely inflamed with carrageenan or chronically inflamed with complete Freund´s adjuvant (CFA). This augmentation was reduced after white cell depletion with cyclophosphamide or neutrophil depletion with an anti-Ly6G antibody. Immunofluorescence and flow cytometry experiments showed that the increased concentration of IL-16 levels found in acutely inflamed paws is mainly related to the infiltration of IL-16 + neutrophils, although a reduced number of IL-16 + lymphocytes was also detected in paws inflamed with CFA. Supporting the functional role of IL-16 in inflammatory hypernociception, the administration of an anti-IL-16 antibody dose-dependently reduced carrageenan- and CFA-induced thermal hyperalgesia and mechanical allodynia. The interest of IL-16 as a target to counteract inflammatory pain is suggested.