Login / Signup

Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range.

Yichen CaiJie ShenGang GeYizhou ZhangWanqin JinKaiwei HuangJinjun ShaoJian YangXiaochen Dong
Published in: ACS nano (2017)
It remains challenging to fabricate strain-sensing materials and exquisite geometric constructions for integrating extraordinary sensitivity, low strain detectability, high stretchability, tunable sensing range, and thin device dimensions into a single type of strain sensor. A percolation network based on Ti3C2Tx MXene/carbon nanotube (CNT) composites was rationally designed and fabricated into versatile strain sensors. This weaving architecture with excellent electric properties combined the sensitive two-dimensional (2D) Ti3C2Tx MXene nanostacks with conductive and stretchable one-dimensional (1D) CNT crossing. The resulting strain sensor can be used to detect both tiny and large deformations with an ultralow detection limit of 0.1% strain, high stretchability (up to 130%), high sensitivity (gauge factor up to 772.6), tunable sensing range (30% to 130% strain), thin device dimensions (<2 μm), and excellent reliability and stability (>5000 cycles). The versatile and scalable Ti3C2Tx MXene/CNT strain sensors provide a promising route to future wearable artificial intelligence with comprehensive tracking ability of real-time and in situ physiological signals for health and sporting applications.
Keyphrases