Login / Signup

Identification of the environmental source of infection for a domestic ferret with cryptococcosis.

Laura J SchmertmannAlison WardmanLaura SetyoAlex KanWieland MeyerRichard MalikMark B Krockenberger
Published in: Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc (2019)
Cryptococcosis, caused by the Cryptococcus gattii and C. neoformans species complexes, is an environmentally acquired mycosis affecting a broad range of host species. Among 9 communally housed ferrets, a 5-y-old castrated male ferret domiciled in an outdoor enclosure in Sydney, Australia was diagnosed with sinonasal cryptococcosis. Clinical signs resolved during 18 mo of itraconazole therapy, but the ferret was eventually euthanized because of splenic hemangiosarcoma. At postmortem, microscopic foci of persistent cryptococcosis were detected. The diagnosis raised concerns that the owners and other ferrets were exposed to a common environmental source of infection, thus prompting an investigation. Soil samples, swabs of a hollow eucalypt log (used for behavioral enrichment), and nasal swabs from 8 asymptomatic ferrets were collected. Nasal exudate (obtained at diagnosis) and tissues (collected at postmortem) were available from the clinical case. Bird seed agar culture resulted in a heavy growth of Cryptococcus spp. from one environmental site (the log), one nasal swab, and nasal exudate and tissues from the clinical case. All other samples were culture-negative. Sub-cultured isolates from the log were a mixture of C. gattii molecular type VGI and C. neoformans molecular type VNI. Ferret isolates were a similar mixture of C. gattii VGI (all disease isolates) and C. neoformans VNI (nasal-colonizing isolate). Multilocus sequence typing further revealed the ferret isolates as identical to environmental isolates collected from the log, confirming the log as the source of clinical disease and nasal colonization. The log was removed to prevent further exposure to a high environmental load of Cryptococcus spp.
Keyphrases
  • chronic rhinosinusitis
  • genetic diversity
  • human health
  • gene expression
  • life cycle
  • stem cells
  • air pollution
  • endothelial cells
  • particulate matter
  • bone marrow
  • solid phase extraction