Login / Signup

Detection of Babesia odocoilei in Ixodes scapularis Ticks Collected from Songbirds in Ontario and Quebec, Canada.

John D ScottEmily L PascoeMuhammad S SajidJanet E Foley
Published in: Pathogens (Basel, Switzerland) (2020)
Songbirds widely disperse ticks that carry a diversity of pathogens, some of which are pathogenic to humans. Among ticks commonly removed from songbirds, the blacklegged tick, Ixodes scapularis, can harbor any combination of nine zoonotic pathogens, including Babesia species. From May through September 2019, a total 157 ticks were collected from 93 songbirds of 29 species in the Canadian provinces of Ontario and Québec. PCR testing for the 18S gene of Babesia species detected Babesia odocoilei in 12.63% of I. scapularis nymphs parasitizing songbirds in Ontario and Québec; none of the relatively small numbers of Ixodes muris, Ixodes brunneus, or Haemaphysalis leporispalustris were PCR-positive. For ticks at each site, the prevalence of B. odocoilei was 16.67% in Ontario and 8.89% and 5.26% in Québec. Of 31 live, engorged I. scapularis larvae and nymphs held to molt, 25 ticks completed the molt; five of these molted ticks were positive for B. odocoilei. PCR-positive ticks were collected from six bird species-namely, Common Yellowthroat, Swainson's Thrush, Veery, House Wren, Baltimore Oriole, and American Robin. Phylogenetic analysis documented the close relationship of B. odocoilei to Babesia canis canis and Babesia divergens, the latter a known pathogen to humans. For the first time in Canada, we confirm the transstadial passage of B. odocoilei in I. scapularis molting from larvae to nymphs. A novel host record reveals I. scapularis on a Palm Warbler. Our findings show that B. odocoilei is present in all mobile life stages of I. scapularis, and it is widely dispersed by songbirds in Ontario and Québec.
Keyphrases
  • real time pcr
  • risk factors
  • gram negative
  • multidrug resistant
  • antimicrobial resistance
  • candida albicans
  • copy number
  • label free
  • loop mediated isothermal amplification