Login / Signup

Trends in Neosubstrate Degradation by Cereblon-Based Molecular Glues and the Development of Novel Multiparameter Optimization Scores.

Suzanne M SzewczykIsha VermaJacob T EdwardsDahlia R WeissEugene L P Chekler
Published in: Journal of medicinal chemistry (2024)
Molecular glues enable the degradation of previously "undruggable" proteins via the recruitment of cereblon (CRBN) to the target. One major challenge in designing CRBN E3 ligase modulating compounds (CELMoDs) is the selectivity profile toward neosubstrates, proteins recruited by CRBN E3 ligase agents for degradation. Common neosubstrates include Aiolos, Ikaros, GSPT1, CK1α, and SALL4. Unlike achieving potency and selectivity for traditional small molecule inhibitors, reducing the degradation of these neosubstrates is complicated by the ternary nature of the complex formed between the protein, CRBN, and CELMoD. The standard guiding principles of medicinal chemistry, such as enforcing hydrogen bond formation, are less predictive of degradation efficiency and selectivity. Disclosed is an analysis of our glutarimide CELMoD library to identify interpretable chemical features correlated to selectivity profiles and general cytotoxicity. Included is a simple multiparameter optimization function using only three parameters to predict whether molecules will have undesired neosubstrate activity.
Keyphrases
  • small molecule
  • protein protein
  • signaling pathway
  • gold nanoparticles
  • binding protein
  • protein kinase