Login / Signup

Atmospheric Low-Temperature Plasma-Induced Changes in the Structure of the Lignin Macromolecule: An Experimental and Theoretical Investigation.

Yizhong CaoMiao TangPei YangMinzhi ChenSiqun WangHaiming HuaWeimin ChenXiaoyan Zhou
Published in: Journal of agricultural and food chemistry (2020)
Atmospheric low-temperature plasma has emerged as a promising pretreatment for lignocellulose to improve bio-refining. Herein, we investigated plasma-induced changes in the chemical structure of lignin to obtain a fundamental understanding of the plasma-lignocellulose interaction. Based on the results, plasma possesses a strong capacity to cleave C-C covalent bonds in the aliphatic region of lignin, accompanied by oxidation. Plasma treatment leads to the degradation and fragmentation of lignin. Pronounced deconstruction of β-O-4 aryl ether is observed in plasma. The relative content of β-O-4 aryl ether was reduced from the initial value of 65.1/100Ar to 58.7/100Ar for lignin from corncob and from the initial value of 72.5/100Ar to 63.8/100Ar for lignin from poplar after plasma treatment, respectively. According to the density functional theory analysis, the oxygen atom of β-O-4 aryl ether is the most likely potential reaction site and the Cβ-O covalent bond exhibits the lowest decomposition free energy (50.5 kcal mol-1), which will easily be cleaved in plasma. The dominant reaction pathway of lignin degradation is the cleavage of the Cβ-O covalent bond followed by the cleavage of the Cβ-Cα bond. We propose that this investigation is beneficial to optimize and expand the applications of plasma treatment in pretreatment of lignocellulose.
Keyphrases
  • ionic liquid
  • density functional theory
  • climate change
  • air pollution
  • mass spectrometry
  • hydrogen peroxide
  • smoking cessation
  • carbon dioxide