Login / Signup

Integration of complementary split-ring resonators into digital microfluidics for manipulation and direct sensing of droplet composition.

Dipesh AggarwalRichard Piffer Soares de CamposAbebaw B JemereAdam Johan BergrenNikola Pekas
Published in: Lab on a chip (2024)
This paper demonstrates the integration of complementary split-ring resonators (CSSRs) with digital microfluidics (DMF) sample manipulation for passive, on-chip radio-frequency (RF) sensing. Integration is accomplished by having the DMF and the RF-sensing components share the same ground plane: by designing the RF-resonant openings directly into the ground plane of a DMF device, both droplet motion and sensing are achieved, adding a new on-board detection mode for use in DMF. The system was modelled to determine basic features and to balance various factors that need to be optimized to maintain both functionalities (DMF-enabled droplet movement and RF detection) on the same chip. Simulated and experimental results show good agreement. Using a portable measurement setup, the integrated CSSR sensor was used to effectively identify a series of DMF-generated drops of ethanol-water mixtures of different compositions by measuring the resonant frequency of the CSSR. In addition, we show that a binary solvent system (ethanol/water mixtures) results in consistent changes in the measured spectrum in response to changes in concentration, indicating that the sensor can distinguish not only between pure solvents from each other, but also between mixtures of varied compositions. We anticipate that this system can be refined further to enable additional applications and detection modes for DMF systems and other portable sensing platforms alike. This proof-of-principle study demonstrates that the integrated DMF-CSSR sensor provides a new platform for monitoring and characterization of liquids with high sensitivity and low consumption of materials, and opens the way for new and exciting applications of RF sensing in microfluidics.
Keyphrases
  • ionic liquid
  • high throughput
  • single cell
  • loop mediated isothermal amplification
  • circulating tumor cells
  • high resolution
  • energy transfer