Dopants Induce Persistent Room Temperature Phosphorescence in Triarylamine Boronate Esters.
Zhu WuKatrina BergmannZachary M HudsonPublished in: Angewandte Chemie (International ed. in English) (2024)
Purely organic materials exhibiting room temperature phosphorescence (RTP) are promising candidates for oxygen sensors and information encryption owing to their cost-effective and environmentally friendly nature. Herein, we report a bimolecular RTP system where DTBU acts as the guest and TBBU serves as the host. In contrast to previously reported results, we find that both pure DTBU and TBBU do not exhibit RTP in the solid state even under N 2 atmosphere. A DTBU/TBBU system with a low doping ratio (0.1 mol %) exhibits persistent yellowish-green afterglow with a lifetime of 340 ms and is highly sensitive to oxygen. A DTBU/TBBU system with a higher doping ratio (10 mol %) maintains a phosphorescence lifetime of 179 ms under air. Applications of DTBU/TBBU at varied doping ratios in both oxygen sensing and information encryption are demonstrated. We propose that the T 1 state of TBBU acts as an energy transfer intermediate between T n and T 1 of DTBU, ultimately leading to the generation of persistent RTP. Overall, this work demonstrates the critical importance of material purity in the design of RTP systems, and how an understanding of host-guest doping enables their photophysical properties to be precisely tuned.