Impact damage and repair in shells of the limpet Patella vulgata.
David TaylorPublished in: The Journal of experimental biology (2016)
Experiments and observations were carried out to investigate the response of the Patella vulgata limpet shell to impact. Dropped-weight impact tests created damage that usually took the form of a hole in the shell's apex. Similar damage was found to occur naturally, presumably as a result of stones propelled by the sea during storms. Apex holes were usually fatal, but small holes were sometimes repaired, and the repaired shell was as strong as the original, undamaged shell. The impact strength (energy to failure) of shells tested in situ was found to be 3.4-times higher than that of empty shells found on the beach. Surprisingly, strength was not affected by removing the shell from its home location, or by removing the limpet from the shell and allowing the shell to dry out. Sand abrasion, which removes material from the apex, was found to have a strong effect. Shells were also subjected to repeated impacts, which caused failure after 2-120 repetitions. In situ shells performed poorly in this test. It is proposed that the apex acts as a kind of sacrificial feature, which confers increased resistance but only for a small number of impacts. Microscopy showed that damage initiates internally as delamination cracks on low-energy interfaces, leading to loss of material by spalling. This mode of failure is a consequence of the layered structure of the shell, which makes it vulnerable to the tensile and shear stresses in the impact shock wave.