PhysioCell ®; - a Novel, Bio-relevant Dissolution Apparatus: Hydrodynamic Conditions and Factors Influencing the Dissolution Dynamics.
Marcela WiaterMichał RomańskiJustyna DoboszBartosz KołodziejUladzimir LipskiGrzegorz GarbaczDorota DanielakPublished in: AAPS PharmSciTech (2023)
The physiologically relevant dissolution apparatuses simulate various aspects of gastrointestinal physiology and help to understand and predict the in vivo behavior of an oral dosage form. In this paper, we present and characterize for the first time a novel bio-relevant dissolution apparatus - PhysioCell ®; . We evaluated the impact of several factors on the hydrodynamic conditions in the key vessel of the apparatus - the StressCell. We observed that the medium flow rate, but not the glass beads' size or amount, significantly influenced the dissolution rate. The relationship was disproportional: the increase in the flow rate from 4.6 to 9.0 mL/min reduced the dissolution time of 85% (T 85 ) of the NaCl tablet by 46%, but from 134 to 300 mL/min decreased the T 85 only by 24%. At the same time, the contractions of the StressCell's elastic walls promoted the content mixing and enhanced the dissolution rate of the paracetamol tablets: even very rare mixing contractions (1 per 10 min) decreased the T 85 over twofold for the flow rate of 8 mL/min. In conclusion, the hydrodynamic conditions in the StressCell affect the dissolution of solid dosage forms and the understanding of these effects is crucial for modeling physiologically-based test conditions in the novel apparatus. Combinations of the unique PhysioCell ®; features - adjustable medium flow, temperature control, controllable pH gradients and predefined mechanical agitation - can create a set of dissolution test scenarios for characterization of oral dosage forms and, in the future, making the in vitro-in vivo predictions. Graphical Abstract.
Keyphrases