Login / Signup

Chemical and Ultrastructural Characterization of Dentin Treated with Remineralizing Dentifrices.

Dimitra AthanasiadouDenise EymaelBeshr HajhamidKarina M M CarneiroAnuradha Prakki
Published in: Journal of functional biomaterials (2024)
The aim of this study is to investigate dentin chemical and ultrastructural changes upon exposure to remineralizing dentifrices. Dentin disks were obtained from permanent human molars and treated for 7 days with the dentifrices: (1) C group-control (no dentifrice); (2) S group-Sensodyne Repair & Protect; (3) D group-Dentalclean Daily Regenerating Gel; and (4) DB group-D group + Dentalclean regenerating booster. Afterwards, samples were submitted to an additional 7 days of toothbrushing associated with daily acidic challenge. Samples were imaged and analyzed (days 1, 7, and 14) for Young's modulus by atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). SEM and AFM revealed precipitate deposition on dentin surfaces in groups S, D, and DB, formed as early as day 1. Surface elemental analysis showed a Si increase on all brushed surfaces. Similar surface morphology was maintained after the acidic challenge period. Bright-field TEM/SAED revealed the formation of nanocrystalline hydroxyapatite inside the dentin tubules of groups S, D, and DB after day 7. Group C presented a gradual reduction of Young's modulus from days-1-14, whereas all remaining groups had increased values. All evaluated dentifrices led to successful formation of hydroxyapatite and increased dentin stiffness.
Keyphrases