Login / Signup

Bound vortex light in an emulated topological defect in photonic lattices.

Chong ShengYao WangYijun ChangHuiming WangYongheng LuYingyue YangShining ZhuXian-Min JinHui Liu
Published in: Light, science & applications (2022)
Topology have prevailed in a variety of branches of physics. And topological defects in cosmology are speculated akin to dislocation or disclination in solids or liquid crystals. With the development of classical and quantum simulation, such speculative topological defects are well-emulated in a variety of condensed matter systems. Especially, the underlying theoretical foundations can be extensively applied to realize novel optical applications. Here, with the aid of transformation optics, we experimentally demonstrated bound vortex light on optical chips by simulating gauge fields of topological linear defects in cosmology through position-dependent coupling coefficients in a deformed photonic graphene. Furthermore, these types of photonic lattices inspired by topological linear defects can simultaneously generate and transport optical vortices, and even can control the orbital angular momentum of photons on integrated optical chips.
Keyphrases
  • high speed
  • high resolution
  • room temperature
  • multidrug resistant
  • quantum dots
  • energy transfer