Login / Signup

Molecular Toxicity Virtual Screening Applying a Quantized Computational SNN-Based Framework.

Mauro NascimbenLia Rimondini
Published in: Molecules (Basel, Switzerland) (2023)
Spiking neural networks are biologically inspired machine learning algorithms attracting researchers' attention for their applicability to alternative energy-efficient hardware other than traditional computers. In the current work, spiking neural networks have been tested in a quantitative structure-activity analysis targeting the toxicity of molecules. Multiple public-domain databases of compounds have been evaluated with spiking neural networks, achieving accuracies compatible with high-quality frameworks presented in the previous literature. The numerical experiments also included an analysis of hyperparameters and tested the spiking neural networks on molecular fingerprints of different lengths. Proposing alternatives to traditional software and hardware for time- and resource-consuming tasks, such as those found in chemoinformatics, may open the door to new research and improvements in the field.
Keyphrases
  • neural network
  • machine learning
  • working memory
  • oxidative stress
  • healthcare
  • big data
  • artificial intelligence
  • high resolution
  • mass spectrometry
  • drug delivery
  • data analysis