Interconvertible Living Radical and Cationic Polymerization using a Dual Photoelectrochemical Catalyst.
Andrei NikolaevZhipeng LuArunavo ChakrabortyLior SepunaruJavier Read de AlanizPublished in: Journal of the American Chemical Society (2021)
The necessity of well-tuned reactivity for successful controlled polymer synthesis often comes with the price of limited monomer substrate scope. We demonstrate here the on-demand interconversion between living radical and cationic polymerization using two orthogonal stimuli and a dual responsive single catalyst. The dual photo- and electrochemical reactivity of 10-phenylphenothiazine catalyst provides control of the polymer's molar mass and composition by orthogonally activating the common dormant species toward two distinct chemical routes. This enables the synthesis of copolymer chains that consist of radically and cationically polymerized segments where the length of each block is controlled by the duration of the stimulus exposure. By alternating the application of photochemical and electrochemical stimuli, the on-demand incorporation of acrylates and vinyl ethers is achieved without compromising the end-group fidelity or dispersity of the formed polymer. The results provide a proof-of-concept for the ability to substantially extend substrate scope for block copolymer synthesis under mild, metal-free conditions through the use of a single, dual reactive catalyst.