Login / Signup

Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility.

Zhentao LiXin YanKeke WuYanpeng JiaoChangren ZhouJingxin Yang
Published in: ACS applied bio materials (2021)
As a pathogenic toxin, endotoxins are the culprit for endotoxemia and can be generally removed from the blood by hemoperfusion. Reduced graphene oxide (rGO) is a promising endotoxin sorbent for hemoperfusion owing to its excellent adsorption capacity, but it has the side effect of nonspecific adsorption and low blood compatibility. Polymyxin B (PMB) acts as an organic affinity ligand that can specifically bind endotoxins. As a natural anticoagulant, heparin (Hep) can reduce the risk of coagulation and improve the blood compatibility of materials. Herein, an rGO bead adsorbent was prepared by coupling with PMB and Hep and used for endotoxin adsorption; in this, polydopamine (pDA) served as an active coating for immobilization of PMB and further coupling with Hep. The physicochemical characteristics indicated that PMB and Hep were successfully immobilized on rGO beads with a hierarchical pore structure. PMB endowed rGO beads with higher adsorption capacity (143.84 ± 3.28 EU/mg) and good adsorption selectivity for endotoxins. Hep significantly improved the blood compatibility of rGO beads. These modified rGO beads also achieved good adsorption capacity and adsorption selectivity for endotoxins in plasma, serum, or blood. Therefore, rGO/pDA/PMB/Hep beads are potential adsorbents for endotoxins in hemoperfusion.
Keyphrases
  • reduced graphene oxide
  • aqueous solution
  • gold nanoparticles
  • venous thromboembolism
  • septic shock
  • high resolution
  • solid phase extraction
  • ionic liquid
  • risk assessment
  • gas chromatography