Login / Signup

Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Symbiont of Eisenia fetida, Cellulosimicrobium funkei HY-13.

Lu BaiJonghoon KimKwang-Hee SonChung-Wook ChungDong-Ha ShinBon-Hwan KuDo Young KimHo-Yong Park
Published in: Biomolecules (2021)
Endo-type chitinase is the principal enzyme involved in the breakdown of N-acetyl-d-glucosamine-based oligomeric and polymeric materials through hydrolysis. The gene (966-bp) encoding a novel endo-type chitinase (ChiJ), which is comprised of an N-terminal chitin-binding domain type 3 and a C-terminal catalytic glycoside hydrolase family 19 domain, was identified from a fibrolytic intestinal symbiont of the earthworm Eisenia fetida, Cellulosimicrobium funkei HY-13. The highest endochitinase activity of the recombinant enzyme (rChiJ: 30.0 kDa) toward colloidal shrimp shell chitin was found at pH 5.5 and 55 °C and was considerably stable in a wide pH range (3.5-11.0). The enzyme exhibited the highest biocatalytic activity (338.8 U/mg) toward ethylene glycol chitin, preferentially degrading chitin polymers in the following order: ethylene glycol chitin > colloidal shrimp shell chitin > colloidal crab shell chitin. The enzymatic hydrolysis of N-acetyl-β-d-chitooligosaccharides with a degree of polymerization from two to six and colloidal shrimp shell chitin yielded primarily N,N'-diacetyl-β-d-chitobiose together with a small amount of N-acetyl-d-glucosamine. The high chitin-degrading ability of inverting rChiJ with broad pH stability suggests that it can be exploited as a suitable biocatalyst for the preparation of N,N'-diacetyl-β-d-chitobiose, which has been shown to alleviate metabolic dysfunction associated with type 2 diabetes.
Keyphrases
  • oxidative stress
  • gene expression
  • genome wide
  • hydrogen peroxide
  • copy number
  • drug release
  • binding protein
  • cell free
  • liquid chromatography