Impact of genomic preselection on subsequent ssGBLUP evaluation of preselected animals for scarcely recorded feed intake in pigs.
Ibrahim JibrilaJan Ten NapelJérémie VandenplasRob BergsmaRoel F VeerkampMario P L CalusPublished in: Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie (2023)
We have previously shown that single-step genomic best linear unbiased prediction (ssGBLUP) estimates breeding values of genomically preselected animals without preselection bias for widely recorded traits, that is traits recorded for the majority of animals in the breeding population. This study investigated the impact of genomic preselection (GPS) on accuracy and bias in ssGBLUP evaluation of genomically preselected animals for a scarcely recorded trait, that is a trait recorded for only a small proportion of the animals, which generally has a lower prediction accuracy than widely recorded traits, mainly due to having a much smaller number of phenotypes available. We used data from a commercial pig breeding program, considering feed intake as a scarcely recorded target trait, being available for ~30% of the animals with phenotypes for any trait, and average daily gain, backfat thickness and loin depth as widely recorded predictor traits, being available for >95% of the animals with phenotypes for any trait. The data contained the routine GPS implemented by commercial animal breeding programs, and we retrospectively implemented two scenarios with additional layers of GPS by discarding pedigree, genotypes and phenotypes of animals without progeny. The ssGBLUP evaluation following GPS used records only from the target trait, only from the predictor traits, or both. Accuracy for feed intake did not differ statistically across GPS scenarios, although it tended to decrease with more intense GPS. The accuracy had average values of 0.37, 0.44, and 0.45 across all GPS scenarios when, respectively, records from only the target trait, only the predictor traits, or both were used in the ssGBLUP evaluation. Considerable deflation of the genomic breeding values for feed intake was observed in the most stringent GPS scenario, due to the variance components being underestimated as a result of the limited amount of strongly preselected data. As long as (co)variance components were unbiased, no or only marginal bias was observed. These results for accuracy and bias were observed whether records of the scarcely recorded target trait, of the predictor traits, or both were used in the ssGBLUP evaluation. Our results show that for the scarcely recorded feed intake in pigs, ssGBLUP is able to estimate breeding values of preselected animals without preselection bias, similarly as previously observed for widely recorded traits.