Login / Signup

Stimuli-Responsive Microfluidic Interface Enables Highly Efficient Capture and Release of Circulating Fetal Cells for Non-Invasive Prenatal Testing.

Huimin ZhangYuanyuan YangYilong LiuYidi WangWeidong RuanJia SongXiyuan YuLingling WuZhi ZhuGuolin HongChaoyong James Yang
Published in: Analytical chemistry (2020)
Circulating fetal nucleated cells (CFCs) carrying whole genomic coding of the fetus in maternal blood have been pursued as ideal biomarkers for noninvasive prenatal testing (NIPT). However, a significant limitation is the need to enrich sufficient cells in quantity and purity for fetal genetic disorder diagnosis. This study for the first time demonstrates a stimuli-responsive ligand enabling interface on array patterned microfluidic chip (NIPT-Chip) for high efficient isolation and release of CFCs in untreated whole blood. Deterministic lateral displacement (DLD)-array was patterned in the chip to increase collision frequency between CFCs and surface-anchored antibody to achieve high efficient cell capture. More importantly, the stimuli-responsive interface enables gentle release of captured CFCs through a thiol exchange reaction for downstream gene analysis of NIPT. With the advantages of simple processing, efficient isolation, and gentle release, NIPT-Chip offers great potential for clinical translation of circulating fetal cell-based NIPT.
Keyphrases