Periostin+ stromal cells guide lymphovascular invasion by cancer cells.
Jamie L NullDae Joong KimJames V McCannPatcharin PramoonjagoJay W FoxJianhao ZengPankaj KumarLincy EdattChad V PecotAndrew C DudleyPublished in: Cancer research (2023)
Cancer cell dissemination to sentinel lymph nodes associates with poor patient outcomes, particularly in breast cancer. The process by which cancer cells egress from the primary tumor upon interfacing with the lymphatic vasculature is complex and driven by dynamic interactions between cancer cells and stromal cells, including cancer associated fibroblasts (CAFs). The matricellular protein periostin can distinguish CAF subtypes in breast cancer and is associated with increased desmoplasia and disease recurrence in patients. However, since periostin is secreted, periostin-expressing CAFs are difficult to characterize in situ, limiting our understanding of their specific contribution to cancer progression. Here, we used in vivo genetic labeling and ablation to lineage trace periostin+ cells and characterize their functions during tumor growth and metastasis. Periostin-expressing CAFs were spatially found at periductal and perivascular margins, were enriched at lymphatic vessel peripheries, and were differentially activated by highly-metastatic cancer cells versus poorly-metastatic counterparts. Surprisingly, genetically depleting periostin+ CAFs slightly accelerated primary tumor growth but impaired intratumoral collagen organization and inhibited lymphatic, but not lung, metastases. Periostin ablation in CAFs impaired their ability to deposit aligned collagen matrices and inhibited cancer cell invasion through collagen and across lymphatic endothelial cell monolayers. Thus, highly-metastatic cancer cells mobilize periostin-expressing CAFs in the primary tumor site that promote collagen remodeling and collective cell invasion within lymphatic vessels and ultimately to sentinel lymph nodes.
Keyphrases
- lymph node
- squamous cell carcinoma
- small cell lung cancer
- papillary thyroid
- end stage renal disease
- neoadjuvant chemotherapy
- endothelial cells
- chronic kidney disease
- oxidative stress
- lymph node metastasis
- wound healing
- prognostic factors
- sentinel lymph node
- cell death
- risk assessment
- atrial fibrillation
- gene expression
- radiofrequency ablation
- childhood cancer
- small molecule
- vascular endothelial growth factor
- amino acid
- catheter ablation
- locally advanced
- young adults
- free survival