Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device.
Brian D ReedMichael J MeyerValentin AbramzonOmer AdOmer AdPat AdcockFaisal R AhmadGün AlppayJames A BallJames BeachDominique BelhachemiAnthony BellofioreMichael BellosJuan Felipe BeltránAndrew BettsMohammad Wadud BhuiyaKristin M BlacklockRobert BoerDavid BoisvertNorman D BraultAaron BuxbaumSteve CaprioChanghoon ChoiThomas D ChristianRobert ClancyJoseph ClarkThomas ConnollyKathren Fink CroceRichard CullenMel DaveyJack DavidsonMohamed M ElshenawyMichael FerrignoDaniel FrierSaketh GudipatiStephanie HamillZhaoyu HeSharath HosaliHaidong HuangLe HuangAli KabiriGennadiy KrigerBrittany LathropAn LiPeter LimStephen LiuFeixiang LuoCaixia LvXiaoxiao MaEvan McCormackMichele MillhamRoger NaniManjula PandeyJohn ParilloGayatri PatelDouglas H PikeKyle PrestonAdeline Pichard-KostuchKyle RearickTodd RearickMarco Ribezzi-CrivellariGerard SchmidJonathan SchultzXinghua ShiBadri SinghNikita SrivastavaShannon F StewmanT R ThurstonPhilip TrioliJennifer TullmanXin WangYen-Chih WangEric A G WebsterZhizhuo ZhangJorge ZunigaSmita S PatelAndrew D GriffithsAntoine M van OijenMichael McKennaMatthew D DyerJonathan M RothbergPublished in: Science (New York, N.Y.) (2022)
Studies of the proteome would benefit greatly from methods to directly sequence and digitally quantify proteins and detect posttranslational modifications with single-molecule sensitivity. Here, we demonstrate single-molecule protein sequencing using a dynamic approach in which single peptides are probed in real time by a mixture of dye-labeled N-terminal amino acid recognizers and simultaneously cleaved by aminopeptidases. We annotate amino acids and identify the peptide sequence by measuring fluorescence intensity, lifetime, and binding kinetics on an integrated semiconductor chip. Our results demonstrate the kinetic principles that allow recognizers to identify multiple amino acids in an information-rich manner that enables discrimination of single amino acid substitutions and posttranslational modifications. With further development, we anticipate that this approach will offer a sensitive, scalable, and accessible platform for single-molecule proteomic studies and applications.
Keyphrases