Login / Signup

Interaction of rigid C3N- with He: Potential energy surface, bound states, and rotational spectrum.

Miguel Lara-MorenoThierry StoecklinPhilippe Halvick
Published in: The Journal of chemical physics (2018)
A two-dimensional rigid rotor model of the potential energy surface is developed for the collision of C3N- with He. Ab initio calculations are performed at the coupled cluster level with single and double excitations and using a perturbative treatment of triple excitations. An augmented correlation consistent polarized valence quadruple zeta basis set complemented with a set of mid-bond functions is chosen for these calculations. The global T-shaped minimum (De = 62.114 cm-1) is found at the intermolecular distance R = 6.42 a0. A secondary minimum (De = 41.384 cm-1) is obtained for the linear configuration C3N--He and for R = 9.83 a0. Calculations of the rovibrational bound states are carried out by using a discrete variable representation method based on Sturmian functions. The first theoretical prediction of the absorption spectra for the He-C3N- complex in the microwave region is also provided.
Keyphrases