Unraveling a volcanic relationship of Co/N/C@Pt x Co catalysts toward oxygen electro-reduction.
Yangdong ZhouJunda ChenZhiyin HuangYuqin PengLixin XingChunmei TangNing WangLing MengMingjie WuLei DuSiyu YePublished in: Nanoscale (2024)
The cathodic oxygen reduction reaction (ORR) has been continuously attracting worldwide interest due to the increasing popularity of proton exchange membrane (PEM) fuel cells. So far, various Pt-group metal (PGM) or PGM-free catalysts have been developed to facilitate the ORR. However, there is still a gap to achieve the expected goals as proposed by the U.S. Department of Energy (DoE). Recently, PGM-free@PGM hybrid catalysts, such as the M/N/C@PtM catalyst, have achieved the milestones of oxygen reduction, as reviewed in our recent work. It is, nevertheless, still challenging to unravel the underlying structure-property relationships. Here, by applying different Pt/Co ratios, a series of Co/N/C@Pt x Co catalysts are synthesized. Interestingly, the ORR activity and stability are not linear with the Pt content, but show a volcano-like curve with increased Pt usage. This relationship has been deeply unraveled to be closely related to the contents of pyrrolic N, pyridinic N, and graphitized carbon in catalysts. This work provides guidelines to rationally design the coupled PGM-free@PGM catalysts toward the ORR by appropriate surface engineering.