Login / Signup

Beyond Phthalate Diesters: Existence of Phthalate Monoesters in South China House Dust and Implications for Human Exposure.

Xiaotu LiuChangfeng PengYumeng ShiHongli TanShuqin TangDa Chen
Published in: Environmental science & technology (2019)
Despite phthalate monoesters (mono-PAEs) being commonly recognized as metabolic products of phthalate diesters (di-PAEs), investigations on their environmental occurrences, particularly in indoor environments, remain limited. The present study demonstrated the presence mono-PAEs, along with a variety of di-PAEs, in house dust collected from 83 South China families. Among 15 target mono-PAEs, monobutyl phthalate (median concentration, 21.54 μg/g) dominated over other mono-PAEs in indoor dust, followed by monoethylhexyl phthalate (9.44 μg/g), monoisobutyl phthalate (5.14 μg/g), monomethyl phthalate (MMP; 2.05 μg/g), and several others. The total concentrations of detectable mono-PAEs (median, 45.40 μg/g) constituted an average of 6.7 ± 3.7% of the total concentrations of their parent diesters in the same dust. Molar concentration ratios of mono-PAEs to their respective di-PAEs varied greatly among chemicals (median, 0.001-3.1), with the highest ratios determined for the MMP/dimethyl phthalate and mono-/diisopropyl phthalate pairs (i.e., 3.1 and 1.5, respectively). In addition, no significant associations were observed between dust-associated mono- or di-PAEs and urinary mono-PAEs detected in both children (n = 48) and adult participants (n = 41). We hypothesized that mono-PAEs in dust could originate from different sources (e.g., impurities in di-PAE formulas, degradation from di-PAEs, and direct application as commercial additives), while the relative importance of various origins could differ between chemicals. Our findings demonstrate broad occurrences of mono-PAEs in indoor environments, but future studies are needed to better elucidate their sources, fate in indoor and outdoor environments, and potential human health risks.
Keyphrases
  • health risk
  • human health
  • air pollution
  • particulate matter
  • endothelial cells
  • biofilm formation
  • health risk assessment
  • drinking water
  • polycyclic aromatic hydrocarbons
  • ionic liquid
  • induced pluripotent stem cells