Kinetic Understanding of the Ultrahigh Ionization Efficiencies (up to 28%) of Excited-State CH2Cl2-Induced Associative Ionization: A Case Study with Nitro Compounds.
Jingyun HuangBo YangJinian ShuZuojian ZhangZhen LiKui JiangPublished in: Analytical chemistry (2019)
Excited-state CH2Cl2-induced associative ionization (AI) is a newly developed ionization method that is very effective for oxygenated organics. However, this method is not widely known. In this study, an unprecedented ionization efficiency and ultrafast reaction rate of AI toward nitro compounds were observed. The ionization efficiencies of o-nitrotoluene (o-NT), m-nitrotoluene (m-NT), and nitrobenzene (NB) were as high as (28 ± 3)%, (27 ± 2)%, and (13 ± 1)%, respectively (∼1-3 ions for every 10 molecules). The measured reaction rate coefficients of these nitroaromatics were (0.5-1.3) × 10-7 molecule-1 cm3 s-1 (∼300 K). These unusual rate coefficients indicated strong long-range interactions between the two neutral reactants, which was regarded as a key factor leading to the ultrahigh ionization efficiency. The detection sensitivities of the nitroaromatics, (1.01-2.16) × 104 counts pptv-1 in 10 s acquisition time, were obtained by an AI time-of-flight mass spectrometer (AI-TOFMS). These experimental results not only provide new insight into the AI reaction but also reveal an excellent ionization method that can improve the detection sensitivity of nitroaromatics to an unprecedented degree.