In Vitro Photoselective Gene Transfection of Hepatocellular Carcinoma Cells with Hypericin Lipopolyplexes.
Hirva ShahSebastian SchlüterMuhammad Umair AminAlice Abu DayyihKonrad H EngelhardtShashank Reddy PinnapreddyEduard PreisUdo BakowskyPublished in: ACS applied materials & interfaces (2024)
The lipopolyplex, a multicomponent nonviral gene carrier, generally demonstrates superior colloidal stability, reduced cytotoxicity, and high transfection efficiency. In this study, a new concept, photochemical reaction-induced transfection, using photosensitizer (PS)-loaded lipopolyplexes was applied, which led to enhanced transfection and cytotoxic effects by photoexcitation of the photosensitizer. Hypericin, a hydrophobic photosensitizer, was encapsulated in the lipid bilayer of liposomes. The preformed nanosized hypericin liposomes enclosed the linear polyethylenimine (lPEI)/pDNA polyplexes, resulting in the formation of hypericin lipopolyplexes (Hy-LPP). The diameters of Hy-LPP containing 50 nM hypericin and 0.25 μg of pDNA were 185.6 ± 7.74 nm and 230.2 ± 4.60 nm, respectively, measured by dynamic light scattering (DLS) and atomic force microscopy (AFM). Gel electrophoresis confirmed the encapsulation of hypericin and pDNA in lipopolyplexes. Furthermore, in vitro irradiation of intracellular Hy-LPP at radiant exposures of 200, 600, and 1000 mJ/cm 2 was evaluated. It demonstrated 60- to 75-fold higher in vitro luciferase expression than that in nonirradiated cells. The lactate dehydrogenase (LDH) assay supported that reduced transfection was a consequence of photocytotoxicity. The developed photosensitizer-loaded lipopolyplexes improved the transfection efficiency of an exogenous gene or induced photocytotoxicity; however, the frontier lies in the applied photochemical dose. The light-triggered photoexcitation of intracellular hypericin resulted in the generation of reactive oxygen species (ROS), leading to photoselective transfection in HepG2 cells. It was concluded that the two codelivered therapeutics resulted in enhanced transfection and a photodynamic effect by tuning the applied photochemical dose.
Keyphrases
- photodynamic therapy
- reactive oxygen species
- drug delivery
- atomic force microscopy
- genome wide
- cancer therapy
- copy number
- high speed
- dna methylation
- diabetic rats
- high throughput
- single molecule
- genome wide identification
- dna damage
- wound healing
- high resolution
- radiation therapy
- transcription factor
- endothelial cells
- drug induced
- hyaluronic acid
- binding protein