Evidence for Gut-Associated Serratia symbiotica in Wild Aphids and Ants Provides New Perspectives on the Evolution of Bacterial Mutualism in Insects.
François RenozInès PonsAlain VanderpoortenGwennaël BatailleChristine NoëlVincent ForayValentin PiersonThierry HancePublished in: Microbial ecology (2018)
Many insects engage in symbiotic associations with diverse assemblages of bacterial symbionts that can deeply impact on their ecology and evolution. The intraspecific variation of symbionts remains poorly assessed while phenotypic effects and transmission behaviors, which are key processes for the persistence and evolution of symbioses, may differ widely depending on the symbiont strains. Serratia symbiotica is one of the most frequent symbiont species in aphids and a valuable model to assess this intraspecific variation since it includes both facultative and obligate symbiotic strains. Despite evidence that some facultative S. symbiotica strains exhibit a free-living capacity, the presence of these strains in wild aphid populations, as well as in insects with which they maintain regular contact, has never been demonstrated. Here, we examined the prevalence, diversity, and tissue tropism of S. symbiotica in wild aphids and associated ants. We found a high occurrence of S. symbiotica infection in ant populations, especially when having tended infected aphid colonies. We also found that the S. symbiotica diversity includes strains found located within the gut of aphids and ants. In the latter, this tissue tropism was found restricted to the proventriculus. Altogether, these findings highlight the extraordinary diversity and versatility of an insect symbiont and suggest the existence of novel routes for symbiont acquisition in insects.