Login / Signup

Fabrication of Highly Permeable and Thermally Stable Reverse Osmosis Thin Film Composite Polyamide Membranes.

Pooria KaramiBehnam KhorshidiJoão B P SoaresMohtada Sadrzadeh
Published in: ACS applied materials & interfaces (2019)
Developing thermally stable polymer membranes for high-temperature water treatment is in high demand, as the recommended usage temperatures of most commercial membranes are lower than 50 °C. In this study, we synthesized novel thin film composite polyamide membranes by modifying the chemical structure of their selective layers. Triaminopyrimidine was used to synthesize a polyamide selective layer with high cross-linking density over a microporous poly(ether sulfone) support. The addition of triamiopyrimidine to the classic m-phenylenediamine/trimesoyl chloride combination remarkably improved the permeation of the membranes. All synthesized thin film composite membranes showed consistent permeate flux for 9 h of operation at 75 °C with only a slight reduction in salt rejection. This study provides a promising and reproducible methodology to develop thermally stable high-flux thin film composite membranes, opening up a new paradigm for high-temperature water treatment processes.
Keyphrases
  • high temperature
  • light emitting
  • smoking cessation
  • low cost
  • solar cells