Login / Signup

Performance of the LIAISON® SARS-CoV-2 Antigen Assay vs. SARS-CoV-2-RT-PCR.

Melanie FiedlerCaroline HoltkampUlf DittmerOlympia Evdoxia Anastasiou
Published in: Pathogens (Basel, Switzerland) (2021)
We aimed to evaluate the LIAISON® SARS-CoV-2 antigen assay (DiaSorin), comparing its performance to real-time polymerase chain reaction (RT-PCR) for the detection of SARS-CoV-2 RNA. 182 (110 PCR-positive and 72 PCR-negative) nasopharyngeal swab samples were taken for the detection of SARS-CoV-2. RT-PCR and antigen assay were performed using the same material. The sensitivity and specificity of the antigen assay were calculated for different cut-offs, with RT-PCR serving as the reference method. Stored clinical samples that were positive for other respiratory viruses were tested to evaluate cross-reactivity. One third (33/110, 30%) were falsely classified as negative, while no false positives were found using the 200 TCID50/mL cut-off for the SARS-CoV-2 antigen as proposed by the manufacturer. This corresponded to a sensitivity of 70% (60-78%) and a specificity of 100% (94-100%). Lowering the cut-off for positivity of the antigen assay to 22.79 or 57.68 TCID50/mL increased the sensitivity of the method, reaching a sensitivity of 92% (85-96%) vs. 79% (70-86%) and a specificity of 81% (69-89%) vs. 99% (91-100%), respectively. The antigen assay reliably detected samples with high SARS-CoV-2 viral loads (≥106 copies SARS-CoV-2/mL), while it cannot differentiate between negative and low positive samples. Cross-reactivity toward other respiratory viruses was not detected.
Keyphrases
  • sars cov
  • respiratory syndrome coronavirus
  • real time pcr
  • high throughput
  • coronavirus disease
  • loop mediated isothermal amplification
  • single cell
  • room temperature
  • structural basis
  • respiratory tract
  • nucleic acid