Targeted drug delivery systems have gained great attention from the chemistry and biomedical fields in recent years due to the minimized harm to normal cells. When designing targeted drug delivery systems, the property of harmlessness to normal cells and the tracking ability of the whole process are quite crucial. These two characters can be brought into the related systems by applying a drug carrier that is self-luminescent and its drug release can be induced by the microenvironment of cancer cells. Therefore, the design and synthesis of drug delivery vehicles are significant for the fabrication of target drug delivery systems. Herein, we have synthesized a cysteine-responsive and fluorescent molecule, maleic acid-modified tetraphenylethylene derivative ( MATPE ), by a facile method. In addition, a drug delivery system with self-luminescence and cysteine-responsiveness based on the self-assembly of MATPE was fabricated. In this system, MATPE and cysteine both played dual roles as cysteine probe/drug carrier and emission-enhanced inducement/drug-release stimulus. The drug-release process was successfully realized in cancer cells and can be visualized, exhibiting great potential in the field of theranostics.
Keyphrases
- drug release
- drug delivery
- cancer therapy
- living cells
- quantum dots
- fluorescent probe
- induced apoptosis
- cell cycle arrest
- sensitive detection
- stem cells
- single molecule
- working memory
- cell proliferation
- signaling pathway
- emergency department
- endoplasmic reticulum stress
- oxidative stress
- cell death
- low cost
- highly efficient