Login / Signup

Biomechanical analysis of single and multi-level artificial disc replacement (ADR) in cervical spine using multi-scale loadings: A finite element study.

Ram KumarAmit KumarShabanam Kumari
Published in: The International journal of artificial organs (2024)
Artificial disc replacement (ADR) is a clinical procedure used to diagnose cervical degenerative disc disease, preserving range of motion (ROM) at the fixation level and preventing adjacent segment degeneration (ASD). This study analyzed the biomechanics of ADR by examining range of motion (ROM), stress levels in bone and implants, and strain in the bone-implant interface using multi-scale loadings. The study focused on single- and double-level patients across various loading scales during physiological motions within the cervical spine. Results showed increased ROM in single-level and double-level fixations during physiological loadings, while ROM decreased at the adjacent level of fixation with the intact cervical spine model. The Prodisc-Implant metal endplate experienced a maximum von Mises stress of 432 MPa during axial rotation, confirming the long durability and biomechanical performance of the bone-implant interface.
Keyphrases