Login / Signup

0D Cs3 Cu2 X5 (X = I, Br, and Cl) Nanocrystals: Colloidal Syntheses and Optical Properties.

Zhishan LuoQian LiLiming ZhangXiaotong WuLi TanChao ZouYejing LiuZewei Quan
Published in: Small (Weinheim an der Bergstrasse, Germany) (2019)
0D lead-free metal halide nanocrystals (NCs) are an emerging class of materials with intriguing optical properties. Herein, colloidal synthetic routes are presented for the production of 0D Cs3 Cu2 X5 (X = I, Br, and Cl) NCs with orthorhombic structure and well-defined morphologies. All these Cs3 Cu2 X5 NCs exhibit broadband blue-green photoluminescence (PL) emissions in the range of 445-527 nm with large Stokes shifts, which are attributed to their intrinsic self-trapped exciton (STE) emission characteristics. The high PL quantum yield of 48.7% is obtained from Cs3 Cu2 Cl5 NCs, while Cs3 Cu2 I5 NCs exhibit considerable air stability over 45 days. Intriguingly, as X is changed from I to Br and Cl, Cs3 Cu2 X5 NCs exhibit a continuous redshift of emission peaks, which is contrary to the blueshift in CsPbX3 perovskite NCs.
Keyphrases
  • aqueous solution
  • metal organic framework
  • energy transfer
  • room temperature
  • quantum dots
  • photodynamic therapy
  • risk assessment
  • fluorescent probe
  • high speed