Login / Signup

Fatigue Behavior and Fracture Surface Analysis of Corroded High-Strength Bridge Cable Wires.

Zhongxiang LiuTong GuoWenjie LiQinghua ZhangBin ChengJosé A F O Correia
Published in: Materials (Basel, Switzerland) (2024)
Bridge cable wires suffer from alternating stress and environmental erosion, leading to premature failure prior to its design life. This paper investigates the fatigue and mechanical behaviors of corroded bridge cable wires with a zinc-aluminum (Zn-Al) alloy coating. Based on the salt spray corrosion test and microstructure analysis, the anti-corrosion resistance and corrosion appearance characteristics of the Zn-Al alloy coating and galvanized coating were investigated. The Zn-Al alloy coating was superior in resistance to corrosion fatigue for the improvement in toughness and the generation of anti-corrosion Zn-Al and Fe-Zn-Al phases. Equations of the accelerated corrosion depth of the steel wires had been regressed to roughly estimate the corrosion life of the Zn-Al alloy coating, which can reach 29.1 years with a thickness of 70 μm. The fatigue and mechanical properties of the bare wires after the salt spray test were further studied based on tensile tests and fatigue tests. The fatigue properties of the bridge cable wire would decrease with the corrosion degree due to the deterioration and embrittlement of materials, where ductility characterized by the elongation rate was the most affected. Fracture surfaces of the wires were captured and analyzed based on a method for recognizing graphical contours. Insufficient fatigue life may occur in the steel wires after corrosion and increase with the degree of corrosion. The pit depth logarithmically weakened the fatigue life of steel wires for the weakening of fatigue toughness and the bearing area. The flat fracture was more common with a single fatigue source, while multiple fatigue sources led to step-like fractures for the generation of multiple dispersed crack propagation regions. Corrosion fatigue was more sensitive to the existence of fatigue sources than the reduction. Multiple initiation sources significantly reduced the fatigue life due to the cracking facilitation of the joint effect of multiple pits. The electrochemical reactions of corrosion can lead to material embrittlement and a reducing effect on the fracture toughness of the steel wires.
Keyphrases
  • sleep quality
  • drinking water
  • multiple sclerosis
  • escherichia coli
  • depressive symptoms
  • gold nanoparticles
  • mass spectrometry
  • physical activity
  • tandem mass spectrometry