Anion-Induced Reversible Actuation of Squaramide-Crosslinked Polymer Gels.
Stefan MommerSander J WezenbergPublished in: ACS applied materials & interfaces (2022)
Supramolecular anion binding to squaramide crosslinkers in poly( N , N -dimethylacrylamide) gel networks enhances swelling and allows reversible chemically driven actuation. The volume swelling ratio of the gels is shown to depend on both the type of anion and its concentration. 1 H NMR and UV-vis titrations with the squaramide crosslinkers reveal a relationship between anion binding affinity and the concentration-dependent swelling behavior. Gel swelling is shown to be reversible, and by embedding a solid support into rod-shaped gels, soft actuators are fabricated that undergo forward and backward bending motion in response to changing anion concentration. The swelling and bending process, which is accompanied by intense green coloration of the gel, is achieved by using only low amounts of crosslinker. This macroscopic actuation achieved by anion binding to specific molecular entities in the polymer network will open new opportunities in the field of chemically responsive materials.