Eye-movement replay supports episodic remembering.
Roger JohanssonMarcus NyströmRichard DewhurstMikael JohanssonPublished in: Proceedings. Biological sciences (2022)
When we bring to mind something we have seen before, our eyes spontaneously unfold in a sequential pattern strikingly similar to that made during the original encounter, even in the absence of supporting visual input. Oculomotor movements of the eye may then serve the opposite purpose of acquiring new visual information; they may serve as self-generated cues, pointing to stored memories. Over 50 years ago Donald Hebb, the forefather of cognitive neuroscience, posited that such a sequential replay of eye movements supports our ability to mentally recreate visuospatial relations during episodic remembering. However, direct evidence for this influential claim is lacking. Here we isolate the sequential properties of spontaneous eye movements during encoding and retrieval in a pure recall memory task and capture their encoding-retrieval overlap. Critically, we show that the fidelity with which a series of consecutive eye movements from initial encoding is sequentially retained during subsequent retrieval predicts the quality of the recalled memory. Our findings provide direct evidence that such scanpaths are replayed to assemble and reconstruct spatio-temporal relations as we remember and further suggest that distinct scanpath properties differentially contribute depending on the nature of the goal-relevant memory.