Login / Signup

Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria.

A R AlvesA M SequeiraÂngela Cunha
Published in: Letters in applied microbiology (2019)
Considering that bacterial biosurfactants (BSFs) are released as secondary metabolites involved in biotic relations within mixed bacterial assemblages, the hypothesis that the co-cultivation of BSF producing bacteria with biofilm-forming strains would enhance BSF synthesis was tested. Environmental BSF producing strains of Bacillus licheniformis and Pseudomonas sp. were cultivated with reference biofilm-forming strains (Pseudomonas aeruginosa and Listeria innocua). BSF production and quorum-quenching effects were tested in solid media. Tensioactive and anionic BSFs were also quantified in cell-free extracts (CFEs). BSF production increased in co-cultures with inducer strains although this was not demonstrated by all screening methods. Increased concentrations of anionic BSF were detected in CFEs of co-cultures in which Pseudomonas aeruginosa was included as inducer, which is in accordance with the observation of larger halos in cetyl trimethylammonium bromide-methylene blue agar. The results demonstrate that co-cultivation positively affects the efficiency of BSF production and that higher production yields may be attained by selecting convenient inducer partners in designed consortia. SIGNIFICANCE AND IMPACT OF THE STUDY: The high production cost of biosurfactants (BSFs) still represents a major limitation to the industrial use of these otherwise advantageous alternatives to chemical surfactants. This work demonstrates that the co-cultivation of consortia of biosurfactant-producer and biofilm-forming bacteria enhances BSF production and may contribute to the cost-effectiveness of biosurfactant-based products.
Keyphrases
  • pseudomonas aeruginosa
  • biofilm formation
  • staphylococcus aureus
  • escherichia coli
  • cystic fibrosis
  • candida albicans
  • acinetobacter baumannii
  • heavy metals
  • ms ms
  • drug resistant
  • hiv infected
  • hepatitis c virus