Login / Signup

Multi- and single-reference methods for the analysis of multi-state peroxidation of enolates.

Pablo OrtegaSara Gil-GuerreroAnzhela VeselinovaAlexandre ZanchetLola González-SánchezPablo G JambrinaCristina Sanz-Sanz
Published in: The Journal of chemical physics (2021)
In spite of being spin-forbidden, some enzymes are capable of catalyzing the incorporation of O2(Σg-3) to organic substrates without needing any cofactor. It has been established that the process followed by these enzymes starts with the deprotonation of the substrate forming an enolate. In a second stage, the peroxidation of the enolate formation occurs, a process in which the system changes its spin multiplicity from a triplet state to a singlet state. In this article, we study the addition of O2 to enolates using state-of-the-art multi-reference and single-reference methods. Our results confirm that intersystem crossing is promoted by stabilization of the singlet state along the reaction path. When multi-reference methods are used, large active spaces are required, and in this situation, semistochastic heat-bath configuration interaction emerges as a powerful method to study these multi-configurational systems and is in good agreement with PNO-LCCSD(T) when the system is well-represented by a single-configuration.
Keyphrases
  • room temperature
  • single molecule
  • molecular dynamics
  • quantum dots