Login / Signup

The Use of Cannabis sativa L. for Pest Control: From the Ethnobotanical Knowledge to a Systematic Review of Experimental Studies.

Genı S OnaManica BalantJosé Carlos BousoAiry GrasJoan VallèsDaniel VitalesTeresa Garnatje
Published in: Cannabis and cannabinoid research (2021)
Background: Despite the benefits that synthetic pesticides have provided in terms of pest and disease control, they cause serious long-term consequences for both the environment and living organisms. Interest in eco-friendly products has subsequently increased in recent years. Methods: This article briefly analyzes the available ethnobotanical evidence regarding the use of Cannabis sativa as a pesticide and offers a systematic review of experimental studies. Results: Our findings indicate that both ethnobotanical and experimental procedures support the use of C. sativa as a pesticide, as remarkable toxicity has been observed against pest organisms. The results included in the systematic review of experimental studies (n=30) show a high degree of heterogeneity, but certain conclusions can be extracted to guide further research. For instance, promising pesticide properties were reported for most of the groups of species tested, especially Arachnida and Insecta; the efficacy of C. sativa as a pesticide can be derived from a wide variety of compounds that it contains and possible synergistic effects; it is crucial to standardize the phytochemical profile of C. sativa plants used as well as to obtain easily reproducible results; appropriate extraction methods should be explored; and upper inflorescences of the plant may be preferred for the production of the essential oil, but further studies should explore better other parts of the plant. Conclusion: In the coming years, as new findings are produced, the promising potential of C. sativa as a pesticide will be elucidated, and reviews such as the present one constitute useful basic tools to make these processes easier.
Keyphrases
  • risk assessment
  • systematic review
  • case control
  • healthcare
  • human health
  • meta analyses
  • high resolution
  • drug delivery
  • climate change