Synthesis of NiMoO 4 /NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts.
Sen HuCuili XiangYongjin ZouFen XuLi-Xian SunPublished in: Nanomaterials (Basel, Switzerland) (2023)
As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO 4 /NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo 4 /NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo 4 /NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm -2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.
Keyphrases
- highly efficient
- electron transfer
- signaling pathway
- lps induced
- oxidative stress
- molecularly imprinted
- pi k akt
- nuclear factor
- reduced graphene oxide
- ionic liquid
- metal organic framework
- label free
- mass spectrometry
- cell proliferation
- immune response
- risk assessment
- heavy metals
- room temperature
- transition metal
- carbon nanotubes
- solid state