In silico discovery of 3 novel quercetin derivatives against papain-like protease, spike protein, and 3C-like protease of SARS-CoV-2.
Kunal BhattacharyaRipunjoy BordoloiNongmaithem Randhoni ChanuRamen KalitaBhargab Jyoti SahariahAtanu BhattacharjeePublished in: Journal, genetic engineering & biotechnology (2022)
Forty bioactive compounds with the highest positive drug-likeness scores were identified. These 40 bioactives were responsible for regulating different pathways associated with antiviral activity and modulation of immunity. Finally, three lead molecules were identified based on the molecular docking and dynamics simulation studies with the highest anti-COVID-19 and immunomodulatory potentials. Standard antiviral drug remdesivir on docking showed a binding affinity of - 5.8 kcal/mol with PLpro, - 6.4 kcal/mol with 3CLpro, and - 8.6 kcal/mol with spike protein receptor-binding domain of SARS-CoV-2, the discovered hit molecules quercetin 3-O-arabinoside 7-O-rhamnoside showed binding affinity of - 8.2 kcal/mol with PLpro, whereas quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] and quercetin-3-neohesperidoside-7-rhamnoside was predicted to have a binding affinity of - 8.5 kcal/mol and - 8.8 kcal/mol with spike protein receptor-binding domain and 3CLpro respectively CONCLUSION: Docking study revealed quercetin 3-O-arabinoside 7-O-rhamnoside to possess the highest binding affinity with papain-like protease, quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] with spike protein receptor-binding domain, and quercetin-3-neohesperidoside-7-rhamnoside with 3C-like protease and all the protein-ligand complexes were found to be stable after performing the normal mode analysis of the complexes in internal coordinates.