Extended N-centered ensemble density functional theory of double electronic excitations.
Filip CernaticEmmanuel FromagerPublished in: Journal of computational chemistry (2024)
A recent work (arXiv:2401.04685) has merged N-centered ensembles of neutral and charged electronic ground states with ensembles of neutral ground and excited states, thus providing a general and in-principle exact (so-called extended N-centered) ensemble density functional theory of neutral and charged electronic excitations. This formalism made it possible to revisit the concept of density-functional derivative discontinuity, in the particular case of single excitations from the highest occupied Kohn-Sham (KS) molecular orbital, without invoking the usual "asymptotic behavior of the density" argument. In this work, we address a broader class of excitations, with a particular focus on double excitations. An exact implementation of the theory is presented for the two-electron Hubbard dimer model. A thorough comparison of the true physical ground- and excited-state electronic structures with that of the fictitious ensemble density-functional KS system is also presented. Depending on the choice of the density-functional ensemble as well as the asymmetry of the dimer and the correlation strength, an inversion of states can be observed. In some other cases, the strong mixture of KS states within the true physical system makes the assignment "single excitation" or "double excitation" irrelevant.