Login / Signup

Ghrelin modulates intracellular signalling pathways that are critical for podocyte survival.

Nabil El ZeinMaya S AbdallahCostantine F DaherMohamad A MrouehJoseph StephanSola Aoun BahousAssaad EidWissam H Faour
Published in: Cell biochemistry and function (2019)
Damage to podocytes is a key event in glomerulopathies. While energy dense food can contribute to kidney damage, the role of the orixegenic hormone "ghrelin" in podocyte biology is still unknown. In the present study, we investigated the effect of ghrelin on podocyte survival as well as the signalling pathways mediating ghrelin effect in immortalized cultured rat podocytes. RT-PCR analysis revealed that GHS-R1 is expressed in rat podocytes. Western blot analysis showed that ghrelin upregulated COX-2 protein expression in a time and dose-dependent manner. Additionally, ghrelin activated P38 MAPK, AKT, and ERK1/2 pathways and also induced P38 MAPK phosphorylation in high glucose conditions. Ghrelin induced ROS release and dose dependently reduced podocyte survival. Ghrelin mediated podocyte cell death was partially reversed by pharmacologically inhibiting P38 MAPK or phospholipase C (PLC). Furthermore, PLC inhibitor (U73122) inhibited ghrelin induced P38 MAPK activation. While PI3K inhibitor (LY294002) was without effect on cell survival or P38 MAPK activation, it inhibited ghrelin induced ERK1/2 phosphorylation. Finally, ghrelin induced TAU phosphorylation was reversed by pharmacologic inhibitors of either P38 MAPK or PKA. In conclusion, ghrelin activated harmful molecular pathways in podocytes that can be damaging to the glomerular filtration barrier SIGNIFICANCE OF THE STUDY: Endocrine derangements secondary to obesity are major players in the aetiology of renal injuries. Furthermore, energy dense diet is thought to be the major element in developing obesity. Appetite and increase in energy intake are regulated by complex hormonal pathways which mainly include the orexigenic hormone "ghrelin" in addition to leptin. To date no study have highlighted a significant role for ghrelin in kidney biology, and therefore, it is thought that its endocrine effect is mostly limited to adipose tissue metabolism and appetite regulation. In this study, we first showed that ghrelin receptor is expressed on glomerular podocytes. Also, ghrelin showed negative impact on podocyte survival through modulating signalling pathways such as P38 MAPK and AKT known to play a key role in podocyte health. Moreover, the negative effects of ghrelin on podocytes were further exacerbated in hyperglycemic conditions. Of note, podocytes contribute to the formation and the maintenance of the glomerular filtration barrier and thus are important for normal renal function. Therefore, ghrelin secretion in the context of obesity could be involved in the aetiology of kidney injury, a well-known hallmark found in obese patients.
Keyphrases