A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum.
Elif Burcu AydınMuhammet AydınMustafa Kemal SezgintürkPublished in: Mikrochimica acta (2023)
A sensitive, simple, and reliable immunosensor was constructed to detect the lowest alteration of a fragment of cytokeratin subunit 19 (CYFRA 21-1), a protein lung carcinoma biomarker. The proposed immunosensor was manufactured with a carbon black C45/polythiophene polymer-containing amino terminal groups (C45-PTNH 2 ) conductive nanocomposite, resulting in an excellent, biocompatible, low-cost, and electrically conductive electrode surface. Anti-CYFRA 21-1 biorecognition molecules were attached to the electrode thanks to the amino terminal groups of the used PTNH 2 polymer with a relatively simple procedure. All electrode surfaces after modifications were characterized by electrochemical, chemical, and microscopic techniques. Electrochemical impedance spectroscopy (EIS) was also utilized for the evaluation of the analytical feature of the immunosensor. The charge transfer resistance of the immunosensor signal was correlated with the CYFRA 21-1 concentration in the concentration range 0.03 to 90 pg/mL. The limit of detection (LOD) and the limit of quantification (LOQ) of the suggested system were 4.7 fg/mL and 14.1 fg/mL, respectively. The proposed biosensor had favorable repeatability and reproducibility, long storage stability, excellent selectivity, and low cost. Furthermore, it was applied to determine CYFRA 21-1 in commercial serum samples, and satisfactory recovery results (98.63-106.18%) were obtained. Thus, this immunosensor can be offered for clinical purposes as a rapid, stable, low-cost, selective, reproducible, and reusable tool.
Keyphrases
- label free
- low cost
- sensitive detection
- loop mediated isothermal amplification
- carbon nanotubes
- reduced graphene oxide
- machine learning
- gold nanoparticles
- deep learning
- solid state
- ionic liquid
- molecularly imprinted
- high resolution
- pseudomonas aeruginosa
- wastewater treatment
- magnetic resonance
- solid phase extraction
- escherichia coli
- amino acid
- dual energy
- protein protein
- single molecule
- tissue engineering
- tandem mass spectrometry
- mass spectrometry