Login / Signup

Effects of continuous nicotine treatment and subsequent termination on cocaine versus food choice in male rhesus monkeys.

Kathryn L SchwienteckS Stevens NegusJustin L PoklisMatthew L Banks
Published in: Experimental and clinical psychopharmacology (2015)
One complicating factor in cocaine addiction may be concurrent exposure and potential dependence on nicotine. The aim of the present study was to determine the effects of continuous nicotine treatment and subsequent termination on cocaine versus food choice in rhesus monkeys (Macaca mulatta). For comparison, we also determined effects of the nicotinic receptor antagonist mecamylamine on cocaine versus food choice during continuous saline and nicotine treatment. Rhesus monkeys (N = 3) responded under a concurrent schedule of food pellet (1 g) and intravenous cocaine (0-0.1 mg/kg/injection) availability. Saline and ascending nicotine doses (0.1-1.0 mg/kg/hr, intravenous) were continuously infused for 7-day treatment periods and separated by 24-hr saline treatment periods. Acute effects of mecamylamine (0.32-1.8 mg/kg, intramuscular, 15 min pretreatment) were determined during continuous saline and 0.32-mg/kg/hr nicotine treatments. During saline treatment, cocaine maintained a dose-dependent increase in cocaine choice. Nicotine treatment did not alter cocaine versus food choice. In contrast, preference of 0.032 mg/kg/injection cocaine was attenuated 24 hr following termination of 0.32-mg/kg/hr nicotine treatment, despite no somatic abstinence signs being observed. Acute mecamylamine enhanced cocaine choice during saline treatment and mainly suppressed rates of behavior during nicotine treatment. Overall, continuous nicotine exposure, up to 1 mg/kg/hr, does not enhance cocaine choice and does not produce nicotine dependence, as demonstrated by the lack of abstinence signs.
Keyphrases
  • smoking cessation
  • magnetic resonance
  • intensive care unit
  • low dose
  • computed tomography
  • radiation therapy
  • dna methylation
  • risk assessment
  • climate change
  • replacement therapy
  • pulmonary arterial hypertension