Biomimetic Elastin Fiber Patch in Rat Aorta Angioplasty.
Hualong BaiShunbo WeiPeng SunLiwei ZhangYuanfeng LiuZhentao QiaoWang WangBoao XieCong ZhangZhuo LiPublished in: ACS omega (2021)
Introduction: Vascular grafts significantly contribute to advances in vascular surgery, but none of the currently available prosthetic grafts have elastin fibers similar to native arteries. We hypothesized that a novel elastin patch could be produced after a rat decellularized thoracic aorta elastin fiber scaffold is implanted subcutaneously in rats; we tested this novel elastin patch in a rat aortic arterioplasty model. Methods: Sprague-Dawley rats (200 g) were used. Rat thoracic aortae were decellularized and sectioned at a thickness of 30 μm. A single elastin fiber scaffold was fabricated as a net (5 × 5 mm2), and then a three-layer scaffold was constructed to make a new patch. The hyaluronic acid-sodium alginate (HA/SA) hydrogel was fabricated by reacting sodium SA, HA, and CaCO3, and then the hydrogel was added to the patch to secure the elastin fibers. The patches were implanted subcutaneously in rats and harvested at day 14. The elastin patches were then implanted into the same rat's aorta and harvested at day 14; a decellularized rat thoracic aorta (TA) patch was used as a control. Sections of the retrieved patches were stained by immunohistochemistry and immunofluorescence. Results: The elastin fibers could be secured by the hydrogel. After 14 days, the subcutaneously implanted elastin patch was incorporated into the rat tissue, and H&E staining showed that new tissue had formed around the elastin patch with almost no hydrogel left. After implantation into the rat aorta and then retrieval on day 14, H&E staining showed that there was neointima and adventitia formation in both the TA and elastin patch groups. Both patches showed a similar histological structure after implantation, and immunofluorescence showed that there were CD34- and nestin-positive cells in the neointima. In both groups, the endothelial cells expressed the arterial identity markers Ephrin-B2 and dll-4; almost one-third of the cells in the neointima were PCNA-positive with rare cleaved caspase-3-positive cells. Conclusion: We demonstrated a novel approach to making elastin fiber scaffold hydrogel patches (elastin patches) and tested them in a rat aorta arterioplasty model. This patch showed a similar healing process as the decellularized TA patch; it also showed potential applications in large animals and may be a substitute for prosthetic grafts in vascular surgery.
Keyphrases
- tissue engineering
- hyaluronic acid
- oxidative stress
- aortic valve
- induced apoptosis
- pulmonary artery
- drug delivery
- minimally invasive
- spinal cord
- extracellular matrix
- cell cycle arrest
- risk assessment
- cell death
- acute coronary syndrome
- smooth muscle
- left ventricular
- endoplasmic reticulum stress
- aortic dissection
- wastewater treatment
- pi k akt
- atrial fibrillation