Login / Signup

Silencing of Poly(ADP-Ribose) Polymerase-2 Induces Mitochondrial Reactive Species Production and Mitochondrial Fragmentation.

Laura JankóTünde KovácsMiklós LaczikZsanett SáriGyula UjlakiGréta KisIbolya HorváthMiklós AntalLászló VíghBálint László BálintKaren UrayPéter Bai
Published in: Cells (2021)
PARP2 is a DNA repair protein. The deletion of PARP2 induces mitochondrial biogenesis and mitochondrial activity by increasing NAD+ levels and inducing SIRT1 activity. We show that the silencing of PARP2 causes mitochondrial fragmentation in myoblasts. We assessed multiple pathways that can lead to mitochondrial fragmentation and ruled out the involvement of mitophagy, the fusion-fission machinery, SIRT1, and mitochondrial unfolded protein response. Nevertheless, mitochondrial fragmentation was reversed by treatment with strong reductants, such as reduced glutathione (GSH), N-acetyl-cysteine (NAC), and a mitochondria-specific antioxidant MitoTEMPO. The effect of MitoTEMPO on mitochondrial morphology indicates the production of reactive oxygen species of mitochondrial origin. Elimination of reactive oxygen species reversed mitochondrial fragmentation in PARP2-silenced cells.
Keyphrases
  • oxidative stress
  • dna repair
  • dna damage
  • reactive oxygen species
  • ischemia reperfusion injury
  • transcription factor
  • small molecule
  • endoplasmic reticulum stress
  • fluorescent probe
  • combination therapy
  • pi k akt