Login / Signup

Evolutionary history of the medaka long-wavelength sensitive genes and effects of artificial regression by gene loss on behavioural photosensitivity.

Yumi HaradaMegumi MatsuoYasuhiro KameiMayuko GotoShoji Fukamachi
Published in: Scientific reports (2019)
Tandem gene duplication has led to an expansion of cone-opsin repertoires in many fish, but the resulting functional advantages have only been conjectured without empirical demonstration. Medaka (Oryzias latipes and O. sakaizumii) have eight (two red, three green, two blue, and one violet) cone opsin genes. Absorbance maxima (λmax) of the proteins vary from 356 nm to 562 nm, but those of the red opsins (long-wavelength sensitive; LWS) are nearly identical, obscuring the necessity of their coexistence. Here, we compared the LWSa and LWSb loci of these sister species and found that the gene duplication occurred long before the latipes-sakaizumii speciation (4-18 million years ago), and the high sequence similarity between the paralogues is the result of at least two events of gene conversion. These repetitive gene conversions would indicate the importance for medaka of retaining two identical LWSs in the genome. However, a newly established medaka mutant with a single LWS showed no defect in LWS expression or behavioural red-light sensitivity, demonstrating functional redundancy of the paralogs. Thus, as with many other genes after whole-genome duplication, the redundant LWS might be on the way to being lost from the current cone opsin repertoire. Thus, non-allelic gene conversion may temporarily provide an easier and more frequent solution than gene loss for reducing genetic diversity, which should be considered when assessing history of gene evolution by phylogenetic analyses.
Keyphrases
  • genome wide
  • genome wide identification
  • copy number
  • dna methylation
  • genome wide analysis
  • gene expression
  • long non coding rna
  • binding protein