Login / Signup

Fabrication and field emission properties of vertical, tapered GaN nanowires etched via phosphoric acid.

Barbara A KazanowskaKeshab R SapkotaPing LuA Alec TalinEzra BussmannTaisuke OhtaBrendan P GunningKevin S JonesGeorge T Wang
Published in: Nanotechnology (2021)
The controlled fabrication of vertical, tapered, and high-aspect ratio GaN nanowires via a two-step top-down process consisting of an inductively coupled plasma reactive ion etch followed by a hot, 85% H3PO4crystallographic wet etch is explored. The vertical nanowires are oriented in the[0001]direction and are bound by sidewalls comprising of{336¯2}semipolar planes which are at a 12° angle from the [0001] axis. High temperature H3PO4etching between 60 °C and 95 °C result in smooth semipolar faceting with no visible micro-faceting, whereas a 50 °C etch reveals a micro-faceted etch evolution. High-angle annular dark-field scanning transmission electron microscopy imaging confirms nanowire tip dimensions down to 8-12 nanometers. The activation energy associated with the etch process is 0.90 ± 0.09 eV, which is consistent with a reaction-rate limited dissolution process. The exposure of the{336¯2}type planes is consistent with etching barrier index calculations. The field emission properties of the nanowires were investigated via a nanoprobe in a scanning electron microscope as well as by a vacuum field emission electron microscope. The measurements show a gap size dependent turn-on voltage, with a maximum current of 33 nA and turn-on field of 1.92 V nm-1for a 50 nm gap, and uniform emission across the array.
Keyphrases