Tailoring local chemical fluctuation of high-entropy structures in thermoelectric materials.
Wu WangShixuan LiuYan WangBaohai JiaYi HuangLin XieBinbin JiangJiaqing HePublished in: Science advances (2024)
In high-entropy materials, local chemical fluctuation from multiple elements inhabiting the same crystallographic site plays a crucial role in their unique properties. Using atomic-resolution chemical mapping, we identified the respective contributions of different element characteristics on the local chemical fluctuation of high-entropy structures in thermoelectric materials. Electronegativity and mass had a comparable influence on the fluctuations of constituent elements, while the radius made a slight contribution. The local chemical fluctuation was further tailored by selecting specific elements to induce large lattice distortion and strong strain fluctuation to lower lattice thermal conductivity independent of increased entropy. The chemical bond fluctuation induced by the electronegativity difference had a noticeable contribution to the composition-dependent lattice thermal conductivity in addition to the known fluctuations of mass and strain field. Our findings provide a fundamental principle for tuning local chemical fluctuation and lattice thermal conductivity in high-entropy thermoelectric materials.
Keyphrases